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Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach

Celia Anteneodo* and Rau´l O. Vallejos†

Centro Brasileiro de Pesquisas Fı´sicas, Rua Dr. Xavier Sigaud 150, 22290-180, Rio de Janeiro, Brazil
~Received 14 August 2001; published 17 December 2001!

We investigate the laws that rule the behavior of the largest Lyapunov exponent~LLE! in many particle
systems with long-range interactions. We consider as a representative system the so-called Hamiltoniana-XY
model where the adjustable parametera controls the range of the interactions ofN ferromagnetic spins in a
lattice of dimensiond. In previous work the dependence of the LLE with the system sizeN, for sufficiently
high energies, was established through numerical simulations. In the thermodynamic limit, the LLE becomes
constant fora.d whereas it decays as an inverse power law ofN for a,d. A recent theoretical calculation
based on a geometrization of the dynamics is consistent with these numerical results. Here we show that the
scaling behavior can also be explained by a random matrix approach, in which the tangent mappings that define
the Lyapunov exponents are modeled by random simplectic matrices drawn from a suitable ensemble.
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I. INTRODUCTION

Dynamical systems of many particles interacting via lon
range forces can exhibit interesting anomalies such as su
diffusion @1–3#, metastable states@4#, and non-Boltzmann-
Gibbs distribution functions@5#. Special interest in such
systems has arisen recently in connection with the nonex
sive generalization of statistical mechanics introduced
Tsallis @6#.

The existence of a dynamics makes the systems m
tioned above very attractive because it is possible, in p
ciple, to associate the properties of the thermodynamic st
with features of the many particle phase space. As a rem
able example, let us mention the ‘‘topological hypothesi
which relates thermodynamic phase transitions to topolog
changes in the structure of phase space@7#.

A dynamical model with an adjustable interaction ran
a, and allowing extensive numerical and analytical explo
tion, has been recently introduced@8–10#. The model con-
sists of a periodicald-dimensional lattice ofN interacting
rotators moving on parallel planes. Each rotator is restric
to the unit circle and therefore it is fully described by
angle 0,u i<2p and its conjugate momentumLi , with i
51, . . . ,N. The dynamics of the system is governed by t
Hamiltonian

H5
1

2 (
i 51

N

Li
21

J

2 (
i , j 51,iÞ j

N
12cos~u i2u j !

r i j
a

, ~1!

where the coupling constant isJ>0 and, without loss of
generality, unitary moments of inertia are chosen for all
particles. Herer i j measures the minimal distance betwe
the rotators located at the lattice sitesi and j. The Hamil-
tonian ~1! describes a classical inertialXY ferromagnet. It
contains as particular cases the mean-field version (a/d
50) and the first-neighbors case, recovered in thea/d→`
limit.
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The systemsa-XY characterized by interaction ranges
<a/d,1 do not have a well defined thermodynamic lim
e.g., the specific~per particle! energy diverges whenN→`.
A proper thermodynamic limit is defined by introducing
scaling parameterÑ @11#, which depends onN, a, and d
@12,13#:

Ñ5
1

N (
i , j 51,iÞ j

N
1

r i j
a

. ~2!

In the largeN limit one has

Ñ~a/d!;H N12a/d, 0<a,d

ln N, a5d

Q~a/d!, a.d

~3!

with Q a function of the ratioa/d only. Specific energylike
quantities must be rescaled byÑ. At the dynamic level, time,
hence inverse Lyapunov exponents, have to be scaled
Ñ21/2 @8#.

A completely equivalent description is obtained by wor
ing with the already scaled Hamiltonian

H̃5
1

2 (
i 51

N

Li
21

J

2Ñ
(

i , j 51,iÞ j

N
12cos~u i2u j !

r i j
a

. ~4!

This kind of scaling of the strength of the interactions, co
mon in standard mean-field discussions, has been applie
the study of the mean-field case of the present model in R
@14,15#. Since the Hamiltonian~4! leads to the same result
as Eq.~1!, but avoiding further rescalings, all our conside
ations from here on will be related to the already sca
Hamiltonian~4!.

The a-XY ferromagnet has been subject of several n
merical and analytical studies. References@8,12,13# and
@9,10# are dedicated to the casesd51 andd52,3, respec-
tively. The mean-field problem is discussed in Refs.@14,15#
while the opposite limit of first-neighbor interactions andd
51 can be found in Ref.@16#. The one-dimensional case ha
©2001 The American Physical Society10-1
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CELIA ANTENEODO AND RAÚL O. VALLEJOS PHYSICAL REVIEW E65 016210
been explored more extensively: For long-ranged inter
tions, a,1, the system displays a second order phase t
sition from a ferromagnetic state to a paramagnetic one
certain critical specific energy«c («c50.75J) @12#. Systems
with 1,a,2 also undergo a second order phase transi
but the critical energy depends ona @12#. For a.2, all
systems behave similarly to the first-neighbor model, wh
there is no order nor phase transition for finite energies in
thermodynamic limit@12#.

Here we are concerned with the high energy phase,
with energies above any critical energy that the system m
have. In this disordered regime, the kinetic energy is m
larger than the bounded potential energy, the rotators
weakly coupled, and the dynamics is weakly chaotic.
Refs. @8–10# the largest Lyapunov exponents~LLE’s! were
calculated numerically. It was found that, in the thermod
namic limit and for large enough energies, the larg
Lyapunov exponent remains positive and finite for sho
range interactions (a/d.1) but vanishes as an invers
power law of the system size in the long-range case
<a/d,1.

Recently Pettini and co-workers developed a theoret
method which, in principle, allows us to obtain the scali
behavior of the LLE analytically@17#. In this approach the
phase space trajectories are mapped onto a geodesic flo
configuration space~equipped with a suitable metric!. It is
assumed that the curvature fluctuations along an ergodic
desic can be modeled as a Gaussian process. Then the L
expressed in terms of the mean and variance of the proc
These parameters are calculated as microcanonical ave
of suitable dynamical functions. There are several wo
where the method was applied to thea-XY model. The scal-
ing behavior of the LLE in the extreme casesa→` anda
50 was found in Refs.@18# and @19#, respectively. Very
recently, Firpo and Ruffo@20# succeeded in calculating th
LLE scaling laws for any interaction range 0<a/d<1.

It is our purpose here to present a simple alternative p
cedure, based on a random matrix formulation, which allo
one to derive the dependence of the LLE on the size of
systemN, the range of the interactionsa, and the lattice
dimensiond. This procedure is based on the ideas introdu
by Benettin@21# in the discussion of two-dimensional bi
liards, and later extended to interacting many particle s
tems@22,23#.

II. THE LARGEST LYAPUNOV EXPONENT

The equations of motion generated by the Hamiltonian~4!
are

u̇ i5Li ,

L̇ i52
J

Ñ
(

j 51,j Þ i

N

sin~u i2u j !/r i j
a ~5!

for i 51, . . . ,N. Discretizing the time axis into stepsDt one
obtains the stroboscopic map relating angles and momen
successive discrete times

u i85u i1LiDt,
01621
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Li85Li2
J

Ñ
(

j 51,j Þ i

N

sin~u i82u j8!/r i j
a Dt. ~6!

For the purpose of discussing Lyapunov exponents one
to consider the tangent mapT, i.e., the linearized version o
Eqs.~6!, given by

du i85du i1dLiDt,

dLi85dLi2
J

Ñ
(

j 51,j Þ i

N

cos~u i82u j8!@du i82du j8#/r i j
a Dt.

~7!

In matrix form these equations read

S du8

dL8
D 5S 1 1Dt

eb̂Dt 11eb̂~Dt !2D S du

dLD[TS du

dLD , ~8!

where all submatrices are of sizeN3N, 1 being the identity.
The matrixb̂ is given by

bi j 5H cos~u i82u j8!/r i j
a for j Þ i ,

2 (
k51,kÞ i

N

cos~u i82uk8!/r ik
a for j 5 i ,

~9!

and the perturbation parametere is

e5J/Ñ~a/d!. ~10!

For long-range interactions it is clear thate goes to zero in
the thermodynamic limit. In the short-range case one hae
;J. In order to treate as a small parameter in both cases,
will consider the limitJ→0 when necessary.

The LLE can be defined by the limiting procedure

lmax5 lim
n→`

1

nDt
lniTji , ~11!

with j an arbitrary vector andT [TnTn21•••T2T1 is the
product ofn tangent maps calculated at successive points
the discretized trajectory. Using the Euclidean norm, Eq.~11!
is rewritten as

lmax5 lim
n→`

1

2nDt
ln~j tT tTj!, ~12!

the superscriptt indicating ‘‘transposed.’’

III. RANDOM MATRIX APPROACH

The random matrix approach is based in the modeling
the tangent mappingsTk by a sequence of noncorrelated ra
dom simplectic matrices mimicking the essential propert
of the chaotic dynamics. In the standard procedure@22# one
replaces the short-timeTk by finite time random matricesRk
having the same structure,
0-2
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Rk5S 1 1t

eâkt 11eâkt
2D . ~13!

In previous treatments the time scalet has always been ig
nored by setting it to 1. Here we prefer to keep track oft, as
later we will argue that it is related to energy. It is fixed
follows. The time scalet must be chosen small enough
order to preserve the short time structure of the tang
maps. However, it cannot be too small, as we assume
consecutive tangent maps are statistically independent. T
t must be an intermediate scale, of the order of the corr
tion time for the tangent maps.~This time scale is analogou
to the correlation time of the Gaussian process modeling
fluctuations of the curvature in the geometric method@17#.!

The symmetric matricesâk are the random analogs ofb̂k

and are not correlated, i.e.,^ânâm&5^ân&^âm&, unless n
5m. Except for the symmetry restriction, the elementsai j of
a given matrixâk are assumed to be independent@24#.

The probability distributions of the elementsai j are ob-
tained frombi j ~9! by considering that the anglesu i8 are
independent from each other and uniformly distributed
@0,2p). This assumption, reasonable in the high ene
phase, implies that:~i! The average of eachai j is null. ~ii !
The information about the range of the interactions is e
bodied in the variance of eachai j , which depends on the
distance between sites:

^~ai j !
2&5

1

2
r i j

22a ~ iÞ j !,

^~aii !
2&5

1

2
Ñ~2a/d!. ~14!

In this way one has defined a crude although nontrivial s
tistical model whose validity has been shown in previo
works @21–23#.

As a consequence of the assumptions made one ha
property^âk

t âk&5g1, which will be useful for evaluating av
erages. In our case,

g5Ñ~2a/d!. ~15!

Within this model the expression for the LLE is obtained
averaging over different realizations of sequences of rand
matrices

lmax5 lim
n→`

1

2nt
^ ln j tR1

t
•••Rn21

t Rn
t RnRn21•••R1j&.

~16!

Assuming that the distribution of LLE’s over the ensemble
sequences is narrow, one can interchange the average an
logarithm. Then the averaging scheme is reduced to a
quence of averages over each matrix distribution,
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lmax. lim
n→`

1

2nt
ln~j t^•••^Rn21

t ^Rn
t Rn&Rn21&•••&j!.

~17!

These averages have already been calculated by Paris
Vulpiani @23# ~see also Ref.@25#!. Instead of just recalling
their results, we prefer to exhibit a different derivatio
which not only makes the paper self-contained, but may
interesting by itself. Notice that the first average can be
mediately done, the result being the symmetric matrix

^Rn
t Rn&5S n11 s11

s11 m11
D , ~18!

with

n1511ge2t2,

m1511t21ge2t4,

s15t1ge2t3. ~19!

The remainingn21 averages can be done iteratively, obta
ing at each step a symmetric matrix with the same struc
as Eq.~18!. For instance, the second step consists in ca
lating ^Rn21

t ^Rn
t Rn&Rn21&. After performing the matrix

product, the average is done using that^ân21&50 and

^ân21
t ân21&5g1. The result is

K Rn21
t S n11 s11

s11 m11
DRn21L 5S n21 s21

s21 m21
D , ~20!

where

S n2

m2

s2

D 5S 1 ge2t2 0

t2 11ge2t4 2t

t ge2t3 1
D S n1

m1

s1

D [MS n1

m1

s1

D .

~21!

Iterating this procedure up to the last step, we obtain

^R1
t ^•••&R1&5S nn1 sn1

sn1 mn1
D , ~22!

where the coefficientes are given by

S nn

mn

sn

D 5MS nn21

mn21

sn21

D 5Mn21S n1

m1

s1

D . ~23!

The LLE is related to the maximum eigenvalue of the mat
~22!:

lmax5 lim
n→`

1

2nt
ln~nn1mn1A~nn2mn!214sn

2!. ~24!
0-3
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By virtue of the recurrence relation~23!, nn , mn , and sn

grow like Lmax
n , whereLmax is the maximum eigenvalue o

the 333 recurrence matrixM. Then

lmax5
1

2t
ln Lmax. ~25!

After solving the cubic eigenvalue equation we expandLmax
arounde50,

Lmax51121/3~ge2t4!1/31
1

21/3
~ge2t4!2/31¯, ~26!

so that

lmax5
1

22/3
~ge2t!1/32

1

360321/3
~ge2t!5/3t41¯.

~27!

Finally, substitutinge and g by their definitions~10! and
~15!, respectively, one gets the compact expression

lmax}J2/3t1/3F Ñ~2a/d!

Ñ2~a/d!
G 1/3

. ~28!

However, for the purpose of comparison with previo
works, it is convenient to make explicit theN dependence
Recalling the asymptotic expression~3! for Ñ, we arrive at

lmax}J2/3t1/35
1/N1/3, 0<a/d,1/2

~ ln N/N!1/3, a/d51/2

1/N2(12a/d)/3, 1/2,a/d,1

1/~ ln N!2/3, a/d51

constant, 1,a/d.

~29!

This scaling law for the LLE can also be written aslmax
;1/Nk with

k5H 1/3, 0<a/d<1/2

2~12a/d!/3, 1/2,a/d,1

0, 1,a/d

, ~30!
or

p
in

y

01621
the casea/d51 being marginal.
We expect the scaling above not to depend on the de

of the dynamics, i.e., it should be typical of systems w
couplings of the form 1/r a, e.g., classicaln-vector ferromag-
nets~of which n52 is the present case!, as long as the per

turbation â has zero mean. Systems for which the avera
perturbation is nonzero belong to a different universa
class, and alternative scaling laws are expected@21–23,25#.

IV. CONCLUDING REMARKS

The scaling behavior oflmax with N→` andJ→0 @Eq.
~29!# is exactly the same as that obtained by using the g
metric method@20#. The agreement can be also extended
the energy domain («→`) by relating the time scalet to
energy. Given that the potential energy is bounded, whe«
→`, the total energy and the kinetic energy are essenti
the same. In this regime, changing the time scale is equ
lent to a change in the kinetic energy, so that we havt
}«21/2. Thus we obtain the scaling lawlmax}«21/6.

The theoretical results~30! agree with the numerical one
obtained in Refs.@8–10#. There are some deviations whic
are consistent with finite size effects, as argued in Ref.@20#.
However, one should not discard the possibility that the sc
ing laws are not exactly those derived in this paper~or in
Ref. @20#!. The differences with numerical calculations mig
be due to the fact that both the geometric and the rand
matrix approaches assume ergodicity and fast~exponential!
decay of the correlations. We do not know at present if
dynamical system fully satisfies these hypotheses. Eventu
this issue will be decided when simulations on larger syste
are available.
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