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Scaling laws for the largest Lyapunov exponent in long-range systems: A random matrix approach
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We investigate the laws that rule the behavior of the largest Lyapunov exp@rdh} in many particle
systems with long-range interactions. We consider as a representative system the so-called Hamilonian
model where the adjustable paramatecontrols the range of the interactions Mfferromagnetic spins in a
lattice of dimensiord. In previous work the dependence of the LLE with the system Nizfor sufficiently
high energies, was established through numerical simulations. In the thermodynamic limit, the LLE becomes
constant fora>d whereas it decays as an inverse power laviNdbr «<<d. A recent theoretical calculation
based on a geometrization of the dynamics is consistent with these numerical results. Here we show that the
scaling behavior can also be explained by a random matrix approach, in which the tangent mappings that define
the Lyapunov exponents are modeled by random simplectic matrices drawn from a suitable ensemble.
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[. INTRODUCTION The systemsy-XY characterized by interaction ranges 0
<a/d<1 do not have a well defined thermodynamic limit,
Dynamical systems of many patrticles interacting via long-e.g., the specifi¢per particle energy diverges wheN— .
range forces can exhibit interesting anomalies such as supe&- proper thermodynamic limit is defined by introducing a
diffusion [1-3], metastable statefgl], and non-Boltzmann-  scaling parameteN [11], which depends oM, «, andd
Gibbs distribution functiond5]. Special interest in such [12 13
systems has arisen recently in connection with the nonexten-
sive generalization of statistical mechanics introduced by 1 N
Tsallis[6]. N=y 2 . )
The existence of a dynamics makes the systems men- b
tioned above very attractive because it is possible, in prin-

ciple, to associate the properties of the thermodynamic statég the largeN limit one has

with features of the many particle phase space. As a remark- NI-/d  0<<d

able example, let us mention the “topological hypothesis,” ~

which relates thermodynamic phase transitions to topological N(a/d)~1{ InN, «a=d 3
changes in the structure of phase spa@e O(ald), a>d

A dynamical model with an adjustable interaction range
a, and allowing extensive numerical and analytical explorawith ® a function of the ratiax/d only. Specific energylike

tion, has been recently introducg8-10|. The model con- 4 niities must be rescaled By At the dynamic level, time,

sists of a periodicabl-dimensional lattice ofN interacting hence inverse Lyapunov exponents, have to be scaled by
rotators moving on parallel planes. Each rotator is restricte%‘_m (8] ’

to the unit circle and therefore it is fully described by an

angle 0<6,<27 and its conjugate momentulr, with | A completely equivalent description is obtained by work-

ing with the already scaled Hamiltonian

=1,... N. The dynamics of the system is governed by the
Hamiltonian N N
ﬁ 1 2 |_2+ J 1_C05(0i_0j) @
N N =_ 24— - =
1 J 1—cogq 6,— 6, 25 N i j=Ti#j a
H:_E Li2+_ E 96, J)’ 1) =1 2N i,j=1,i#j rIJ
21 20,isTi#] re

! This kind of scaling of the strength of the interactions, com-
where the coupling constant =0 and, without loss of mon in standard mean-field discussions, has been applied to
generality, unitary moments of inertia are chosen for all thethe study of the mean-field case of the present model in Refs.
particles. Herer;; measures the minimal distance between[14,15. Since the Hamiltoniai4) leads to the same results
the rotators located at the lattice siteandj. The Hamil- as Eq.(1), but avoiding further rescalings, all our consider-
tonian (1) describes a classical inertiXlY ferromagnet. It ations from here on will be related to the already scaled
contains as particular cases the mean-field versiefd (  Hamiltonian(4).
=0) and the first-neighbors case, recovered indhe— o The «-XY ferromagnet has been subject of several nu-
limit. merical and analytical studies. Referend&s12,13 and
[9,10] are dedicated to the casds-1 andd=2,3, respec-
tively. The mean-field problem is discussed in Réfst, 15
*Email address: celia@chbpf.br while the opposite limit of first-neighbor interactions add
TEmail address: vallejos@cbpf.br =1 can be found in Ref16]. The one-dimensional case has
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been explored more extensively: For long-ranged interac- g N

tions, <1, the system displays a second order phase tran- Li=Li—= 2 sin( 6 — ej’)/rfj'At. (6)
sition from a ferromagnetic state to a paramagnetic one at a N j=1j#i

certain critical specific energy, (e.=0.75]) [12]. Systems _ )

with 1<@<2 also undergo a second order phase transitiofrOr the purpose of discussing Lyapunov exponents one has
but the critical energy depends am [12]. For «>2, all 10 conadgr the tangent map i.e., the linearized version of
systems behave similarly to the first-neighbor model, wheréds. (6), given by

there is no order nor phase transition for finite energies in the

thermodynamic limif12]. 86 =56+ SLiAt,
Here we are concerned with the high energy phase, i.e., N
with energies above any critical energy that the system may , R , R
have. In this disordered regime, the kinetic energy is much ki =6Li— N J.:le# cog 6 — 0;)[66] — 56; 1/rjjAt.
larger than the bounded potential energy, the rotators are ' )

weakly coupled, and the dynamics is weakly chaotic. In

Refs.[8-1(Q the largest Lyapunov exponentisLE’s) were  |n matrix form these equations read

calculated numerically. It was found that, in the thermody-

namic limit and for large enough energies, the largest EY 4 1 1At 50 50

Lyapunov exponent remains positive and finite for short- =1 = A ) ET(

range interactions ¢/d>1) but vanishes as an inverse oL ebAt 1+ eb(At) oL oL

p<06\£\;zr<liw of the system size in the long-range case 0where all submatrices are of sikex N, 1 being the identity.
Recently Pettini and co-workers developed a theoretical "€ matrixb is given by

method which, in principle, allows us to obtain the scaling

). 8

behavior of the LLE analyticallf17]. In this approach the cos 6 — 0))/rjj for j=i,
phase space trajectories are mapped onto a geodesic flow in bi; = N o 9)
configuration spacéequipped with a suitable metjiclt is - > cog6/ —6)ire for j=i,

assumed that the curvature fluctuations along an ergodic geo- k=1k#i

desic can be modeled as a Gaussian process. Then the LLE is
expressed in terms of the mean and variance of the procesaér.1
These parameters are calculated as microcanonical averages
of suitable dynamical functions. There are several works
where the method was applied to theXY model. The scal-
ing behavior of the LLE in the extreme cases-»o and «
=0 was found in Refs[18] and [19], respectively. Very
recently, Firpo and Ruff¢20] succeeded in calculating the
LLE scaling laws for any interaction rangesQv/d<1.

It is our purpose here to present a simple alternative pro-
cedure, based on a random matrix formulation, which allows 1
one to derive the dependence of the LLE on the size of the Amax=lIm ——1In|| 7¢], (11
systemN, the range of the interactions, and the lattice nNAL
dimensiond. This procedure is based on the ideas introduced
by Benettin[21] in the discussion of two-dimensional bil- with & an arbitrary vector and=T,T,_;---T,T; is the
liards, and later extended to interacting many particle sysproduct ofn tangent maps calculated at successive points of
tems[22,23. the discretized trajectory. Using the Euclidean norm, (Ed).

is rewritten as

d the perturbation parameteis
e=J/N(ald). (10

For long-range interactions it is clear thagoes to zero in
the thermodynamic limit. In the short-range case one éas
~J. In order to treak as a small parameter in both cases, we
will consider the limitJ—0 when necessary.

The LLE can be defined by the limiting procedure

Il. THE LARGEST LYAPUNOV EXPONENT
1

The equations of motion generated by the Hamiltorin Nmax= lim mln(&‘?"Tg), (12
are n—sos
6=L;, the superscript indicating “transposed.”
N
. J
Li=— ﬁ ' ;i. sin( 6, — 91)/fﬁ (5) Ill. RANDOM MATRIX APPROACH
=1)=1 . . . .
= The random matrix approach is based in the modeling of
fori=1,... N. Discretizing the time axis into stepst one  the tangent mappingB, by a sequence of noncorrelated ran-
obtains the stroboscopic map relating angles and momenta @em simplectic matrices mimicking the essential properties
successive discrete times of the chaotic dynamics. In the standard proced@® one
, replaces the short-timg, by finite time random matriceR,
6 = 6;+ LiAt, having the same structure,
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1 17
Rk:

1
Nmay= lim -—1 Y. R:], RLRn Ro_1): - .
e 1+ et 5 lim S (R y(RiR)R-)+)2)

17

These averages have already been calculated by Parisi and
Vulpiani [23] (see also Ref[25]). Instead of just recalling
their results, we prefer to exhibit a different derivation,
order to preserve the short time structure of the tamgen‘fvhICh not only makes the paper self-contamed, but may he
éqterestmg by itself. Notice that the first average can be im-

maps. However, it cannot be too small, as we assume th mediately done, the result being the symmetric matrix
consecutive tangent maps are statistically independent. Thus y ' 9 y

7 must be an intermediate scale, of the order of the correla-

In previous treatments the time scaléhas always been ig-
nored by setting it to 1. Here we prefer to keep track ods

later we will argue that it is related to energy. It is fixed as
follows. The time scaler must be chosen small enough in

tion time for the tangent mapéThis time scale is analogous (RERn)=< nl ol , (18)
to the correlation time of the Gaussian process modeling the ol pal
fluctuations of the curvature in the geometric methad].)
The symmetric matriced, are the random analogs bf ~ With
and are not correlated, i.e(anam) =(ay)(ay), unlessn b= 1+ yels?,
=m. Except for the symmetry restriction, the elememjsof
a given matrixé[( are agsumed to be independgm]. py=1+ 72+ ye2r,
The probability distributions of the elemerds are ob-
tained fromby; (9) by considering that the angley are o= 1+ y€73. (19)

independent from each other and uniformly distributed in

[0,2m). _Thi$ assurpption, reasonable in th(_a high energ¥rhe remainingh— 1 averages can be done iteratively, obtain-
phase, implies thatii) The average of eachy; is null. (i) 4 at each step a symmetric matrix with the same structure

The information about the range of the interactions is eMyq £q (18). For instance, the second step consists in calcu-
bodied in the variance of eadh;, which depends on the lating (R, ,(R'R,)R,_). After performing the matrix

distance between sites: X ; -

product, the average is done using tHa, ,)=0 and
L, (a'_,a,_1)=vl. The result is
<(aij)2>:§rﬁ O (#)),

Rt V]_l O'l] R _ V21 0'21 (20)
1 n-1 0'11] Mlﬂ n-1 U'zﬂ Mzﬂ '
((ai?)=5N(2ald). 19 rere
2,2
In this way one has defined a crude although nontrivial sta- [ ¥2 1 yer 0 V1 "1
tistical model whose validity has been shown in previous wo | = 7 1+vye?* 27 || wi|l=M| mq
works [21-23. o T yelr 1 o o
As a consequence of the assumptions made one has the 2 ! ! 21)
property(é}(ék>= v1, which will be useful for evaluating av-
erages. In our case, Iterating this procedure up to the last step, we obtain
N 1 ol
y=N(2al/d). (15) R ORy= M n 29
(R R)=| )L @2
Within this model the expression for the LLE is obtained by L .
averaging over different realizations of sequences of randorfynere the coefficientes are given by
matrices
Vn Vh-1 V1
N B | =M|{ o1 | =M""H g | (23)
Nmax= 1Im m_“n §Ry- Ry RRyRy g - le)' o On1 o,

n—oo

16

(16) The LLE is related to the maximum eigenvalue of the matrix
Assuming that the distribution of LLE’s over the ensemble of(zz):
sequences is narrow, one can interchange the average and the

logarithm. Then the averaging scheme is reduced to a se- )\ __ =lim i|n(vn+,un+ V(vn—un)?+402). (24
guence of averages over each matrix distribution, 2T

016210-3



CELIA ANTENEODO AND RAUL O. VALLEJOS PHYSICAL REVIEW E65 016210

By virtue of the recurrence relatio(23), v,, w,, ando, the casew/d=1 being marginal.

grow like Ly ., WhereL ,,x is the maximum eigenvalue of We expect the scaling above not to depend on the details

the 3xX 3 recurrence matris. Then of the dynamics, i.e., it should be typical of systems with
1 couplings of the form 1/, e.g., classicah-vector ferromag-
}\maxzz_ln Lo (25) nets(of whichn=2 is the present cageas long as the per-

turbationa has zero mean. Systems for which the average
perturbation is nonzero belong to a different universality

After solving the cubic eigenvalue equation we exph . .
J g g Pafd class, and alternative scaling laws are expef2dd-23,295.

arounde=0,
1/3 2_M4\1/3 1 2 _4\2/3
Lmax=1+2"(ye 7)™+ 27,3(7/6 ), (26) IV. CONCLUDING REMARKS
that The scaling behavior of ,,,x with N— o~ andJ—0 [Eq.
SO ha

(29)] is exactly the same as that obtained by using the geo-
1 1 metric method 20]. The agreement can be also extended to
7\max=7,3(7627)1/3— —1/3(7627)5/37'4+"" the energy domaing— ) by relating the time scale to
360x2 energy. Given that the potential energy is bounded, when
(27 —o, the total energy and the kinetic energy are essentially
the same. In this regime, changing the time scale is equiva-
lent to a change in the kinetic energy, so that we have
«& 12 Thus we obtain the scaling lai, <&~ */®.
N(2a/d) The theoretical results30) agree with the numerical ones
= (28)  obtained in Refs[8—-10]. There are some deviations which
N*(a/d) are consistent with finite size effects, as argued in 2.
However, for the purpose of comparison with preVious_l—lowever, one should not discard tht_a pos_sibili_ty that th<_a scal-
works, it is convenient to make explicit tHé dependence. Ng laws are not exactly those derived in this pafer in

: . . N : Ref.[20]). The differences with numerical calculations might
Recalling the asymptotic expressi@) for N, we arrive at .
g ymp P @ be due to the fact that both the geometric and the random

N3 0<ald<1/2 matrix approaches assume ergodicity and fagponential
(INN/NYYE ald=1/2 decay of the correlations. We do not know at present if the
2(1-ald)f3 dynamical system fully satisfies these hypotheses. Eventually
Nmax*J73r13¢ 1N » l2<ald<l (29) this issue will be decided when simulations on larger systems

Finally, substitutinge and y by their definitions(10) and
(15), respectively, one gets the compact expression

13
Nyt J23743

1/(InN)??, ald=1 are available.
constant, Kald.
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